Hermitian Finsler metrics and the Kobayashi metric
نویسندگان
چکیده
منابع مشابه
Generalized Douglas-Weyl Finsler Metrics
In this paper, we study generalized Douglas-Weyl Finsler metrics. We find some conditions under which the class of generalized Douglas-Weyl (&alpha, &beta)-metric with vanishing S-curvature reduce to the class of Berwald metrics.
متن کاملOn C3-Like Finsler Metrics
In this paper, we study the class of of C3-like Finsler metrics which contains the class of semi-C-reducible Finsler metric. We find a condition on C3-like metrics under which the notions of Landsberg curvature and mean Landsberg curvature are equivalent.
متن کاملGromov hyperbolicity and the Kobayashi metric
It is well known that the unit ball endowed with the Kobayashi metric is isometric to complex hyperbolic space and in particular is an example of a negatively curved Riemannian manifold. One would then suspect that when Ω ⊂Cd is a domain close to the unit ball then (Ω ,KΩ ) should be negatively curved (in some sense). Unfortunately, for general domains the Kobayashi metric is no longer Riemanni...
متن کاملHermitian metric on quantum spheres
The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.
متن کاملProjective complex Finsler metrics
In this paper we obtain the conditions in which two complex Finsler metrics are projective, i.e. have the same geodesics as point sets. Two important classes of such metrics are submitted to our attention: conformal projective and weakly projective complex Finsler spaces. For each of them we study the transformations of the canonical connection. We pay attention for local projectivity with a pu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1990
ISSN: 0022-040X
DOI: 10.4310/jdg/1214444630